NEXT Lab

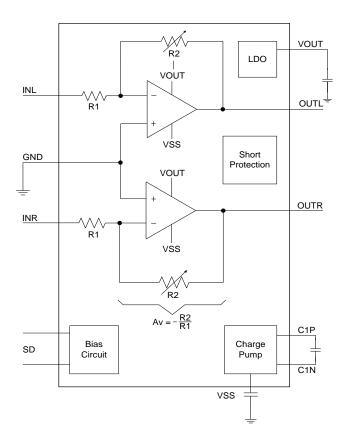
NXA2103Q

Semiconductor Development Group

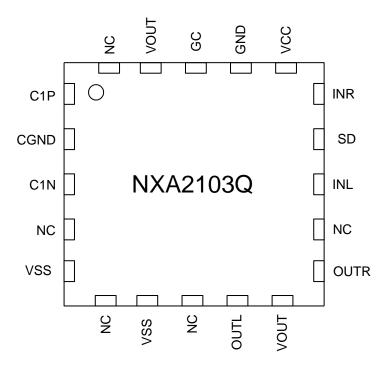
Capacitor less direct headphone driver with Charge pump & LDO

General Description

The NXA2103Q is a stereo headphone drivers designed to allow the removal of the output DC-blocking capacitors for reduced component count and cost. And it is composed to charge pump and LDO. The NXA2103Q is an ideal for small portable electronics where size and cost are critical design parameters. The NXA2103Q is capable of driving 60mW into a 16Ω load at 5.5V. NXA2103Q have a selectable Gain 0dB/6dB. Charge pump & headphone's power is supplied by output of LDO.


Feature

- Space Saving Package
- Ground-Referenced Outputs Eliminate DC-Bias Voltages on Headphone Ground Pin
- No Output DC-Blocking Capacitors
- · Reduced Board Area
- Reduced Component Cost
- Improved THD+N Performance
- No Degradation of Low-Frequency Response Due to Output Capacitors
- · Built in charge pump & LDO
- Power Supply Range: 2.5V~5.5V
- 60mW/Ch Output Power into 16Ω at 5.5V
- Selectable Gain
- Short-Circuit and Thermal Protection
- Click and Pop suppression circuit
- QFN-20 4mm*4mm


Application

- Notebook Computers
- CD / MP3 Players
- Smart Phones
- Cellular Phones

Block Diagram

Terminal assignment

Pin description

Pin Name	Pin No.	I/O	Description					
C1P	1	I/O	Charge pump flying capacitor positive terminal					
CGND	2	S	Power ground (connect to GND)					
C1N	3	I/O	Charge pump flying capacitor negative terminal					
NC	4		No connection					
VSS	5	I/O	Output from negative charge pump / HP_amp negative supply					
NC	6		No connection					
VSS	7	I/O	Output from negative charge pump / HP_amp negative supply					
NC	8		No connection					
OUTL	9	0	Left audio channel output signal					
VOUT	10	I/O	Regulator output / HP_amp positive supply					
OUTR	11	0	Right audio channel output signal					
NC	12		No connection					
INL	13		Left audio channel input signal					
SD	14		shutdown, active low logic					
INR	15		Right audio channel input signal					
VCC	16	S	Supply voltage					
GND	17		Signal ground (connect to GND)					
GC	18		Gain control (H:0dB, L:6dB, Pull-down)					
VOUT	19	I/O	Regulator output / HP_amp positive supply					
NC	20		No connection					

Maximum Absolute ratings

over operation free-air temperature range, TA=25℃ (unless otherwise noted)

Parameter	Symbol	Value	Unit
Supply voltage	VDD	-0.3~6.0	V
Input voltage	Vı	-0.3~VDD+0.3	V
Operating free-air temperature range	TA	-40~85	$^{\circ}$
Operating junction temperature range	TJ	-40~150	$^{\circ}$
Storage temperature range	Tstg	-65~85	°C

Recommended Operating Conditions

Parameter	Symbol	Va	Unit		
raiametei	Symbol	min	max	Offic	
Supply voltage	VDD	2.5	5.5	V	
High-level input voltage (SD)	VIH	1.4		V	
Low-level input voltage (SD)	VIL		0.4	V	
Operating free-air temperature	ТА	-40	85	°C	

Electrical Characteristics

Ta=25.0°C (Unless otherwise noted)

Characteristics	Symbol	Condition	Value			Lloit
Characteristics			min	typ	max	Unit
Output offset voltage	VOS	VDD=1.8V~5.5V, Inputs grounded		± 1.0	± 5.0	mV
Power Supply Rejection Ratio	PSRR	VDD=1.8V~5.5V		-95		dB
High-level output voltage	Voн	VDD=3V, RL=16 Ω		1.5		V
Low-level output voltage	Vol	VDD=3V, RL=16 Ω		-1.5		V
High-level input current(SD)	[IIH]	VDD=5.5V, VI=VDD			1.0	uA
Low-level input current(SD)	IIL	VDD=5.5V, VI=0V			1.0	uA
	loo	VDD=1.8V, No load, SD=VDD		4.8		mA
		VDD=3V, No load, SD=VDD		6.4		
Supply Current		VDD=5.5V, No load,		6.4		
		SD=VDD				
		Shutdown mode, VDD=1.8V~5.5V			1.0	uA

Operating Characteristics

VDD=3V, TA=25°C, RL=16 Ω (unless otherwise noted)

Characteristics	Symbol	Condition	Value			Unit
Characteristics	Syllibol		min	typ	max	Offic
		THD=1%, VDD=3V, f=1kHz		60		
Output power	Ро	THD=1%, VDD=5.5V, f=1kHz		60		mW
		THD=1%, V _{DD} =3V, f=1kHz, RL=32 Ω		40		
Total harmonic distortion +	THD+N	Po=10mW, f=1kHz		0.05		- %
Noise	1110.11	Po=10mW, f=20Hz		0.02		
Cross Talk	СТ	Po=20mW, f=1kHz		-75		dB
Closed-loop voltage gain	Av	0dB 6dB	-0.95 -1.90	-1.0 -2.0	-1.05 -2.10	V/V
Gain matching	△Av			1		%
Slew rate	SR			2.2		V/us
Noise output voltage	Vn	A-weighted, 0dB, inputs terminated to GND, output referred Gain=0dB,6dB		10 15		uVRMS
Start-up time from shutdown				100		us
Input impedance				15		kΩ
Signal-to-Noise-Ratio	SNR	Po=40mW		98		dB
Mute attenuation		Shutdown Mode		-80		dB
Thermal shutdown		Threshold		150		$^{\circ}$
THEITHAL SHULUOWH		Hysteresis		30		$^{\circ}$

Charge Pump & LDO

Characteristics	Symbol	Condition	Value			Unit
Characteristics			min	typ	max	Offit
CHARGE PUMP						
Oscillator Frequency	fosc			450		kHz
LDO						
LDO Operating voltage			2.5		5.5	V
LDO Output voltage				2.5		V

Application Note

Headphone Amplifiers

Single-supply headphone amplifiers typically require dc-blocking capacitors. If the dc bias is not removed, the output signal is severely clipped, and large amounts of dc current rush through the headphones, potentially damaging them.

Input-Blocking Capacitors

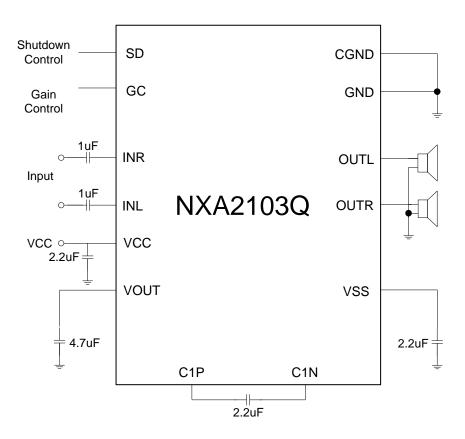
DC input-blocking capacitors are required to be added in series with the audio signal into the input pins of the NXA2103Q. These capacitors block the DC portion of the audio source and allow the NXA2103Q inputs to be properly biased to provide maximum performance. These capacitors form a high-pass filter with the input impedance of the NXA2103Q. The capacitance used is the input-blocking capacitor and the resistance is the input impedance of the NXA2103Q. Because the gains of the NXA2103Q are fixed, the input impedance remains a constant value.

Charge Pump Flying Capacitor and VSS Capacitor

The NXA2103Q feature use charge pump. The charge pump flying capacitor serves to transfer charge during the generation of the negative supply voltage. The VSS capacitor must be at least equal to the charge pump flying capacitor in order to allow maximum charge transfer. Low ESR capacitors are an ideal selection, and a value of 2.2µF is typical.

Decoupling Capacitors

The NXA2103Q is direct path headphone amplifiers that require adequate power supply decoupling to ensure that the noise and total harmonic distortion(THD) are low. A good low ESR ceramic capacitor, typically 2.2uF, placed as close as possible to the device VDD lead works best. Placing this decoupling capacitor frequency noise signals, a greater capacitor placed near the audio power amplifier would also help.


Exposed Pad On NXA2103Q

The pad on the PCB should be allowed to float and not be connected to VSS or power. Connecting this pad to VSS or power prevents the device from working properly because it is connected internally to Ground.

GND and CGND Connections

The GND and CGND pins of the NXA2103Q must be routed separately back to the decoupling capacitor in order to provide proper device operation. If the GND and CGND pins are connected directly to each other, the part functions without risk of failure, but the noise and THD performance do not meet the specifications.

Application Circuit

